Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Infect Dis ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330357

ABSTRACT

INTRODUCTION: Malaria is preventable yet causes >600,000 deaths annually. RTS, S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation Phase 1 study of a recombinant, full-length circumsporozoite protein vaccine (rCSP) administered with adjuvant GLA-LSQ on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naïve adults. Primary endpoints were safety and reactogenicity. Secondary endpoints were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection (CHMI). RESULTS: Participants were enrolled into four groups receiving rCSP/GLA-LSQ: 10 µg x 3 (n = 20), 30 µg x 3 (n = 10), 60 µg x 3 (n = 10) or 60 µg x 2 (n = 9); ten participants received 30 µg rCSP alone x 3; and six infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent CHMI 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher IgG titers, but did not achieve previously established RTS, S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess if adjuvant or schedule adjustments improve efficacy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03589794.

2.
Ann Intern Med ; 177(3): 343-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408357

ABSTRACT

BACKGROUND: The ACTT risk profile, which was developed from ACTT-1 (Adaptive COVID-19 Treatment Trial-1), demonstrated that hospitalized patients with COVID-19 in the high-risk quartile (characterized by low absolute lymphocyte count [ALC], high absolute neutrophil count [ANC], and low platelet count at baseline) benefited most from treatment with the antiviral remdesivir. It is unknown which patient characteristics are associated with benefit from treatment with the immunomodulator baricitinib. OBJECTIVE: To apply the ACTT risk profile to the ACTT-2 cohort to investigate potential baricitinib-related treatment effects by risk quartile. DESIGN: Post hoc analysis of ACTT-2, a randomized, double-blind, placebo-controlled trial. (ClinicalTrials.gov: NCT04401579). SETTING: Sixty-seven trial sites in 8 countries. PARTICIPANTS: Adults hospitalized with COVID-19 (n = 999; 85% U.S. participants). INTERVENTION: Baricitinib+remdesivir versus placebo+remdesivir. MEASUREMENTS: Mortality, progression to invasive mechanical ventilation (IMV) or death, and recovery, all within 28 days; ALC, ANC, and platelet count trajectories. RESULTS: In the high-risk quartile, baricitinib+remdesivir was associated with reduced risk for death (hazard ratio [HR], 0.38 [95% CI, 0.16 to 0.86]; P = 0.020), decreased progression to IMV or death (HR, 0.57 [CI, 0.35 to 0.93]; P = 0.024), and improved recovery rate (HR, 1.53 [CI, 1.16 to 2.02]; P = 0.002) compared with placebo+remdesivir. After 5 days, participants receiving baricitinib+remdesivir had significantly larger increases in ALC and significantly larger decreases in ANC compared with control participants, with the largest effects observed in the high-risk quartile. LIMITATION: Secondary analysis of data collected before circulation of current SARS-CoV-2 variants. CONCLUSION: The ACTT risk profile identifies a subgroup of hospitalized patients who benefit most from baricitinib treatment and captures a patient phenotype of treatment response to an immunomodulator and an antiviral. Changes in ALC and ANC trajectory suggest a mechanism whereby an immunomodulator limits severe COVID-19. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
Azetidines , COVID-19 , Purines , Pyrazoles , Sulfonamides , Adult , Humans , Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Immunologic Factors , SARS-CoV-2 , Treatment Outcome , Double-Blind Method
3.
Malar J ; 22(1): 383, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115002

ABSTRACT

BACKGROUND: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR = 1-hazard ratio or VERR = 1-risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. METHODS: Power of VEmolFOI and VEC was compared to that of VEHR and VERR by simulations and analytic derivations, and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. RESULTS: In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like those from RTS,S, but VEC is less powerful than VEHR for trials in which the number of clones at first infection is not reduced. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. CONCLUSIONS: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints for small trials unless supported by targeted data analysis. TRIAL REGISTRATIONS: NCT00866619, NCT02663700, NCT02143934.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Child , Humans , Infant , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Genotype , Malaria/drug therapy , Malaria Vaccines/therapeutic use , Malaria, Falciparum/epidemiology , Primaquine/therapeutic use , Clinical Trials as Topic
4.
Res Sq ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790581

ABSTRACT

Background: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR=1 - hazard ratio or VERR=1 - risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. Methods: We used simulations and analytic derivations to compare power of these methods to VEHR and VERR and applied them to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. Results: The RTS,S vaccine significantly reduced the number of clones at first infection, but PfSPZ vaccine and primaquine did not. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like RTS,S, but VEC is less powerful than VEHR for vaccines which do not reduce the number of clones at first infection. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. Conclusions: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, we recommend against these estimators as primary endpoints for small trials unless supported by targeted data analysis. Trial registrations: NCT00866619, NCT02663700, NCT02143934.

5.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Article in English | MEDLINE | ID: mdl-36996185

ABSTRACT

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Subject(s)
Schistosomiasis mansoni , Animals , Humans , Mice , Adjuvants, Immunologic , Aluminum Hydroxide , Brazil , Immunoglobulin G , Schistosoma mansoni , Protozoan Vaccines
6.
Ann Intern Med ; 175(12): 1716-1727, 2022 12.
Article in English | MEDLINE | ID: mdl-36442063

ABSTRACT

BACKGROUND: The COVID-19 standard of care (SOC) evolved rapidly during 2020 and 2021, but its cumulative effect over time is unclear. OBJECTIVE: To evaluate whether recovery and mortality improved as SOC evolved, using data from ACTT (Adaptive COVID-19 Treatment Trial). DESIGN: ACTT is a series of phase 3, randomized, double-blind, placebo-controlled trials that evaluated COVID-19 therapeutics from February 2020 through May 2021. ACTT-1 compared remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and ACTT-3, remdesivir plus SOC was the control group. This post hoc analysis compared recovery and mortality between these comparable sequential cohorts of patients who received remdesivir plus SOC, adjusting for baseline characteristics with propensity score weighting. The analysis was repeated for participants in ACTT-3 and ACTT-4 who received remdesivir plus dexamethasone plus SOC. Trends in SOC that could explain outcome improvements were analyzed. (ClinicalTrials.gov: NCT04280705 [ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and NCT04640168 [ACTT-4]). SETTING: 94 hospitals in 10 countries (86% U.S. participants). PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: SOC. MEASUREMENTS: 28-day mortality and recovery. RESULTS: Although outcomes were better in ACTT-2 than in ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90 [CI, 0.56 to 1.40]). Comparable patients were less likely to be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI, 0.53 to 0.97]), and hydroxychloroquine use decreased. Outcomes improved from ACTT-2 to ACTT-3 (HR for recovery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to 0.97]). Potential explanatory factors (SOC trends, case surges, and variant trends) were similar between ACTT-2 and ACTT-3, except for increased dexamethasone use (11% to 77%). Outcomes were similar in ACTT-3 and ACTT-4. Antibiotic use decreased gradually across all stages. LIMITATION: Unmeasured confounding. CONCLUSION: Changes in patient composition explained improved outcomes from ACTT-1 to ACTT-2 but not from ACTT-2 to ACTT-3, suggesting improved SOC. These results support excluding nonconcurrent controls from analysis of platform trials in rapidly changing therapeutic areas. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adult , Humans , Antiviral Agents/therapeutic use , Clinical Trials, Phase III as Topic , Dexamethasone , Double-Blind Method , Randomized Controlled Trials as Topic , Treatment Outcome
7.
EClinicalMedicine ; 52: 101579, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35928033

ABSTRACT

Background: Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. Methods: Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. Findings: 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. Interpretation: PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. Funding: U.S. National Institutes of Health, Sanaria. Registration number: ClinicalTrials.gov identifier (NCT number): NCT02996695.

8.
Sci Transl Med ; 14(659): eabn9709, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36001680

ABSTRACT

Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.


Subject(s)
Insect Bites and Stings , Malaria Vaccines , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Insect Bites and Stings/chemically induced , Malaria/prevention & control , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Sporozoites/genetics , Vaccines, Attenuated
9.
Trials ; 23(1): 185, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236394

ABSTRACT

BACKGROUND: Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS: DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION: DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION: ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.


Subject(s)
Aedes , Dengue Virus , Dengue , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Brazil/epidemiology , Child , Dengue/epidemiology , Dengue/prevention & control , Humans , Incidence , Mosquito Vectors , Zika Virus Infection/epidemiology
10.
Infect Dis Ther ; 11(2): 841-852, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35184256

ABSTRACT

INTRODUCTION: There is an urgent need to develop new drugs to treat malaria due to increasing resistance to first-line therapeutics targeting the causative organism, Plasmodium falciparum (P. falciparum). One drug candidate is DM1157, a small molecule that inhibits the formation of hemozoin, which protects P. falciparum from heme toxicity. We describe a first-in-human, phase 1 trial of DM1157 in healthy adult volunteers that was halted early because of significant toxicity. METHODS: Adverse events were summarized using descriptive statistics. We used pharmacokinetic modeling to quantitatively assess whether the DM1157 exposure needed for P. falciparum inhibition was achievable at safe doses. RESULTS: We found that there was no dose where both the safety and efficacy target were simultaneously achieved; conversely, the model predicted that 27 mg was the highest dosage at which patients would consistently maintain safe exposure with multiple dosing. By pre-defining dose escalation stopping rules and conducting an interim pharmacokinetic/pharmacodynamic analysis, we determined that the study would be unable to safely achieve a dosage needed to observe an anti-malarial effect, thereby providing strong rationale to halt the study. CONCLUSION: This study provides an important example of the risks and challenges of conducting early phase research as well as the role of modeling and simulation to optimize participant safety (ClinicalTrials.gov, NCT03490162).

11.
Antimicrob Agents Chemother ; 66(1): e0143221, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34606333

ABSTRACT

Oxfendazole is a potent veterinary antiparasitic drug undergoing development for human use to treat multiple parasitic infections. Results from two recently completed phase I clinical trials conducted in healthy adults showed that the pharmacokinetics of oxfendazole is nonlinear, affected by food, and, after the administration of repeated doses, appeared to mildly affect hemoglobin concentrations. To facilitate oxfendazole dose optimization for its use in patient populations, the relationship among oxfendazole dose, pharmacokinetics, and hemoglobin concentration was quantitatively characterized using population pharmacokinetic-pharmacodynamic modeling. In fasting subjects, oxfendazole pharmacokinetics was well described by a one-compartment model with first-order absorption and elimination. The change in oxfendazole pharmacokinetics when administered following a fatty meal was captured by an absorption model with one transit compartment and increased bioavailability. The effect of oxfendazole exposure on hemoglobin concentration in healthy adults was characterized by a life span indirect response model in which oxfendazole has positive but minor inhibitory effect on red blood cell synthesis. Further simulation indicated that oxfendazole has a low risk of posing a safety concern regarding hemoglobin concentration, even at a high oxfendazole dose of 60 mg/kg of body weight once daily. The final model was further used to perform comprehensive target attainment simulations for whipworm infection and filariasis at various dose regimens and target attainment criteria. The results of our modeling work, when adopted appropriately, have the potential to greatly facilitate oxfendazole dose regimen optimization in patient populations with different types of parasitic infections.


Subject(s)
Benzimidazoles , Adult , Benzimidazoles/pharmacokinetics , Biological Availability , Body Weight , Computer Simulation , Dose-Response Relationship, Drug , Humans
12.
PLoS Pathog ; 17(5): e1009594, 2021 05.
Article in English | MEDLINE | ID: mdl-34048504

ABSTRACT

PfSPZ-CVac combines 'PfSPZ Challenge', which consists of infectious Plasmodium falciparum sporozoites (PfSPZ), with concurrent antimalarial chemoprophylaxis. In a previously-published PfSPZ-CVac study, three doses of 5.12x104 PfSPZ-CVac given 28 days apart had 100% vaccine efficacy (VE) against controlled human malaria infection (CHMI) 10 weeks after the last immunization, while the same dose given as three injections five days apart had 63% VE. Here, we conducted a dose escalation trial of similarly condensed schedules. Of the groups proceeding to CHMI, the first study group received three direct venous inoculations (DVIs) of a dose of 5.12x104 PfSPZ-CVac seven days apart and the next full dose group received three DVIs of a higher dose of 1.024x105 PfSPZ-CVac five days apart. CHMI (3.2x103 PfSPZ Challenge) was performed by DVI 10 weeks after the last vaccination. In both CHMI groups, transient parasitemia occurred starting seven days after each vaccination. For the seven-day interval group, the second and third vaccinations were therefore administered coincident with parasitemia from the prior vaccination. Parasitemia was associated with systemic symptoms which were severe in 25% of subjects. VE in the seven-day group was 0% (7/7 infected) and in the higher-dose, five-day group was 75% (2/8 infected). Thus, the same dose of PfSPZ-CVac previously associated with 63% VE when given on a five-day schedule in the prior study had zero VE here when given on a seven-day schedule, while a double dose given on a five-day schedule here achieved 75% VE. The relative contributions of the five-day schedule and/or the higher dose to improved VE warrant further investigation. It is notable that administration of PfSPZ-CVac on a schedule where vaccine administration coincided with blood-stage parasitemia was associated with an absence of sterile protective immunity. Clinical trials registration: NCT02773979.


Subject(s)
Antimalarials/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Vaccination , Adult , Erythrocytes/immunology , Female , Humans , Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria, Falciparum/parasitology , Middle Aged , Parasitemia , Sporozoites , Young Adult
13.
Vaccine ; 39(8): 1195-1200, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33494963

ABSTRACT

Plasmodium falciparum circumsporozoite protein (CSP) is a major sporozoite surface protein and a key target of pre-erythrocytic malaria subunit vaccines. A full-length recombinant CSP (rCSP) based strategy could be advantageous, as this antigen includes a region critical to sporozoite cell attachment and hepatocyte invasion. The adjuvant Glucopyranosyl Lipid A-liposome Quillaja saponaria 21 (GLA-LSQ) functions as a TLR4 agonist, promotes antigen-specific TH1 responses and stimulates cytotoxic T cell production. To date, one study has reported the clinical acceptability of GLA-LSQ. We present interim results of a phase 1 first-in-human dose-escalation clinical trial of full-length rCSP vaccine given with or without GLA-LSQ adjuvant. Participants experienced only mild to moderate related solicited adverse events. The lowest adjuvanted vaccine dose achieved >90-fold rise in geometric mean anti-CSP IgG antibody titer. These favorable safety and immunogenicity results confirm the immunostimulatory capacity of this relatively new adjuvant and support next steps in clinical product development. Trial registration: ClinicalTrials.gov Identifier NCT03589794 (registered 18 July 2018).


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Protozoan , Antibody Formation , Humans , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins , Vaccines, Synthetic
14.
J Infect Dis ; 220(12): 1962-1966, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31419294

ABSTRACT

Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.


Subject(s)
Dose-Response Relationship, Immunologic , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Sporozoites/immunology , Administration, Intravenous , Adult , Female , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/immunology , Male , Vaccination
16.
Am J Trop Med Hyg ; 86(6): 931-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22665596

ABSTRACT

There remains a need for new drugs to prevent relapse of Plasmodium vivax or P. ovale infection. The relapsing primate malaria P. cynomolgi has been used for decades to assess drugs for anti-hypnozoite activity. After sporozoite inoculation and blood-stage cure of initial parasitemia with chloroquine, rhesus macaques were treated on subsequent relapses with chloroquine in conjunction with test regimens of approved drugs. Tested drugs were selected for known liver or blood-stage activity and were tested alone or in conjunction with low-dose primaquine. Tinidazole and pyrazinamide prevented relapse when used in conjunction with chloroquine and low-dose primaquine. Triamterene and tinidazole administered without primaquine achieved radical cure in some animals. All other tested drugs or combinations failed to prevent relapse. The rhesus macaque-P. cynomolgi model remains a useful tool for screening drugs with anti-hypnozoite activity. Tinidazole and pyrazinamide require further investigation as agents to enable dose reduction of primaquine.


Subject(s)
Antimalarials/therapeutic use , Macaca mulatta/parasitology , Malaria, Vivax/drug therapy , Plasmodium cynomolgi/drug effects , Plasmodium cynomolgi/pathogenicity , Animals , Chloroquine/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Malaria, Vivax/prevention & control , Parasitemia/prevention & control , Plasmodium vivax/growth & development , Plasmodium vivax/pathogenicity , Primaquine/therapeutic use , Pyrazinamide/therapeutic use , Secondary Prevention , Sporozoites/drug effects , Tinidazole/therapeutic use , Triamterene/therapeutic use
17.
Clin Infect Dis ; 54(2): 232-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22052893

ABSTRACT

BACKGROUND: We conducted a randomized, placebo-controlled, double-blind trial to establish the efficacy of atovaquone-proguanil to prevent malaria with the goal of simulating weekly dosing in a human Plasmodium falciparum challenge model. METHODS: Thirty volunteers randomly received 1 of the following dose regimens: (1) 250 milligrams of atovaquone and 100 milligrams of proguanil (250/100 milligrams) 1 day prior to infectious mosquito challenge (day -1), (2) 250/100 milligrams on day 4 after challenge, (3) 250/100 milligrams on day -7, (4) 500 milligrams of atovaquone and 200 milligrams of proguanil (500/200 milligrams) on day -7 or, (5) 1000 milligrams of atovaquone and 400 milligrams of proguanil (1000/400 milligrams) on day -7. All regimens included matching placebo such that all volunteers received identical pill numbers. Six volunteers served as open-label infectivity controls. Volunteers underwent mosquito sporozoite challenge with P. falciparum 3D7 strain. Follow-up consisted of serial microscopy and close clinical monitoring for 90 days. RESULTS: Six of 6 infectivity controls developed parasitemia as expected. Two of 5 evaluable volunteers receiving 250/100 milligrams 7 days prior to challenge and 1 of 6 volunteers receiving 1000/400 milligrams 7 days prior to challenge were microscopically diagnosed with malaria. All other volunteers were protected. Atovaquone exposure (area under the curve) during liver stage development was low in 2 of 3 volunteers with prophylactic failure (423 and 199 ng/mL × days compared with a mean for protected volunteers of 1903 ng/mL × days), as was peak concentration (165 and 81 ng/mL compared with a mean of 594 ng/mL in volunteers with prophylactic success). Elimination half-life was short in volunteers with prophylactic failure (2.4, 2.0, and 3.3 days compared with a mean of 4.1 days in volunteers with prophylactic success). CONCLUSIONS: Single-dose atovaquone-proguanil provides effective malaria chemoprophylaxis against P. falciparum challenge at dosing intervals supportive of weekly dosing. Postexposure prophylaxis 4 days after challenge was 100% effective.


Subject(s)
Antimalarials/administration & dosage , Atovaquone/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Proguanil/administration & dosage , Adult , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Area Under Curve , Atovaquone/adverse effects , Atovaquone/pharmacokinetics , Chemoprevention/methods , Cohort Studies , Drug Combinations , Female , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism , Male , Middle Aged , Parasitemia/drug therapy , Parasitemia/metabolism , Parasitemia/prevention & control , Placebos , Proguanil/adverse effects , Proguanil/pharmacokinetics , Sporozoites/drug effects
18.
Am J Trop Med Hyg ; 84(5): 825-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21540397

ABSTRACT

A sensitive biomarker of malaria infection would obviate the need for placebo control arms in clinical trials of malaria prophylactic drugs. Antibodies to the 42-kDa fragment of merozoite surface protein-1 (MSP1(42)) have been identified as a potential marker of malaria exposure in individuals receiving prophylaxis with mefloquine. We conducted an open-label trial to determine the sensitivity of seroconversion to MSP1(42), defined as a fourfold rise in enzyme-linked immunosorbant assay (ELISA) titer, among 23 malaria naïve volunteers receiving mefloquine prophylaxis and 6 controls after Plasmodium falciparum sporozoite challenge. All members of the control cohort but none of the mefloquine cohort developed patent parasitemia. Four of six controls but zero of the mefloquine cohort seroconverted to MSP1(42). We conclude that malaria infection during suppressive prophylaxis does not induce antibody response to the blood-stage antigen MSP1(42) in a malaria-naïve study population.


Subject(s)
Antibodies, Protozoan/biosynthesis , Antigens, Protozoan/immunology , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Mefloquine/therapeutic use , Protozoan Proteins/immunology , Adult , Antimalarials/administration & dosage , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mefloquine/administration & dosage
19.
Am J Trop Med Hyg ; 83(2): 258-65, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20682864

ABSTRACT

In 2003, 44 U.S. Marines were evacuated from Liberia with either confirmed or presumed Plasmodium falciparum malaria. An outbreak investigation showed that only 19 (45%) used insect repellent, 5 (12%) used permethrin-treated clothing, and none used bed netting. Adherence with weekly mefloquine (MQ) was reported by 23 (55%). However, only 4 (10%) had serum MQ levels high enough to correlate with protection (> 794 ng/mL), and 9 (22%) had evidence of steady-state kinetics (MQ carboxy metabolite/MQ > 3.79). Tablets collected from Marines met USP identity and dissolution specifications for MQ. Testing failed to identify P. falciparum isolates with MQ resistance. This outbreak resulted from under use of personal protective measures and inadequate adherence with chemophrophylaxis. It is essential that all international travelers make malaria prevention measures a priority, especially when embarking to regions of the world with high transmission intensity such as west Africa..


Subject(s)
Disease Outbreaks , Malaria, Falciparum/epidemiology , Military Personnel , Plasmodium falciparum , Adult , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacology , Humans , Insect Repellents/administration & dosage , Insect Repellents/pharmacology , Liberia/epidemiology , Male , Mefloquine/administration & dosage , Mefloquine/therapeutic use , Mosquito Control , Mosquito Nets , Patient Compliance , Plasmodium falciparum/drug effects , Protective Clothing , United States , Young Adult
20.
Am J Trop Med Hyg ; 78(6): 962-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18541777

ABSTRACT

Hansen's disease (HD) continues to have worldwide impact despite efforts to eradicate the disease. Although a definitive transmission mode has not been identified, data supports an association between HD and contact with the nine-banded armadillo. We conducted a case-control study of 28 HD patients to determine if there is an association between armadillo exposure and HD. There was no association between HD and place of birth or having hunted, consumed, or had direct or indirect contact with deer, birds, or squirrels. Univariate analysis showed that residence in Mexico (P = 0.001), hunting rabbits (P = 0.04), cleaning rabbits (P < 0.001), and armadillo exposure from hunting (P = 0.005), cleaning (P = 0.004), consuming (P = 0.002) them, or having direct armadillo contact (P = 0.017) were associated with HD. Multivariate analysis showed that eating armadillos (P = 0.039, odds ratio [OR] = 3.65, 95% confidence interval [CI] = 1.07-12.4), cleaning rabbits (P = 0.018, OR = 4.08, 95% CI = 1.27-13.1), and having lived in Mexico (P = 0.006, OR = 24.9, 95% CI = 2.52-245) were associated with HD.


Subject(s)
Armadillos/microbiology , Leprosy/transmission , Zoonoses , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Case-Control Studies , Female , Humans , Leprosy/epidemiology , Male , Middle Aged , Surveys and Questionnaires , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...